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ABSTRACT: Proline is incompatible with ideal β-sheet
geometry, and the incompatibility gets magnified when
Pro assumes the cis peptidyl−prolyl conformation. We
show that Gly appears with high propensity at pre-cisPro
positions in β-sheets and rescues the β-sheet from severe
distortions by assuming a right-handed polyproline
conformation (βPR), effectively increasing the local β-
sheet register by one residue. The united residue,
Gly(βPR)-cisPro, is evolutionarily conserved, functionally
important, and dynamic in nature.

Canonical protein secondary structures such as α-helices or
β-sheets rely on regular hydrogen-bonded scaffolds and

show little preference for Pro1 since it lacks an amide proton.
When present in α-helices, Pro can induce kinks.2 The
constrained backbone dihedral angle φ (∼−60°) of Pro can
also distort β-sheets.3 The structural incompatibility can be
aggravated if the peptidyl−prolyl bond assumes the rare4 and
energetically unfavorable5 cis conformation. Despite being
incompatible, a small but significant proportion of Pro appears
in β-sheets, in both trans and cis conformations.6 By exploring
local sequence and structural signatures of Pro residues in β-
sheets in a non-redundant high-resolution protein structural
database, specifically focusing on cisPro and the associated pre-
cisPro residue, we identify a new structural united residue, Gly-
cisPro.
A pre-culled database consisting of 4922 protein chains

(sequence identity: <25%; resolution: <2.0 Å; R-factors: <0.25)
was obtained from the PISCES7 server (March 18, 2011 list).
The dataset contained 71 cisPro and 4411 transPro residues in
β-sheets (annotated with DSSP8). Surprisingly, ∼66% of the
pre-cisPro(β) positions were occupied by Gly (Figure S1). The
over-representation is statistically significant since the propen-
sity of Gly at pre-cisPro(β) positions (compared to that at pre-
transPro(β) positions) was very high (∼11; Figure 1a); so was
the joint propensity of Gly-cisPro in β-sheets (Figure 1b). The
propensities of Gly and cisPro in β-sheets are 0.67 and 0.12,
respectively (Table S1). Therefore, the expected propensity of
β-(Gly-cisPro) is the joint propensity, 0.67 × 0.12 = 0.08. The
observed propensity of Gly-cisPro in β-sheets is 0.83 (Table
S2), 10 times higher than expected. In comparison, the
expected propensity of Val-Val (1.91 × 1.91 = 3.64; Table S1)
and the observed propensity of Val-Val (3.3; Table S2) are very
similar, indicating that Gly-cisPro is a β-sheet sequence motif.
Propensities of Gly to occur in any position in a Pro-containing
β-strand also showed that Gly prefers the pre-cisPro position
(propensity: 7.1; z-value: 15.7) and slightly disfavors the pre-
transPro position (propensity: 0.6; z-value: −7.8).

The proline backbone strongly prefers the left-handed
polyproline II (βP), while its mirror image, the right-handed
polyproline (βPR), is primarily accessible only to Gly.9 Dihedral
angle distributions show that pre-transPro Gly residues prefer
the regular β-strand (βS) conformation (Figure 1c); in
comparison, pre-cisPro Gly residues in β-sheets prefer βPR
(Figure 1d). The pre-(cis/trans)Pro Gly residues, however,
show no such differential preference when Pro assumes a bend
or coil conformation (Figure 1c,d). Non-Gly residues occurring
at pre-(cis/trans)Pro positions in β-sheets do not exhibit any
preferred backbone conformation either (Figure S2). In other
words, Gly(βPR)-cisPro is not only a sequence motif but also a
structural motif, acting like a united residue. We encountered
six protein pairs that exhibited structural polymorphism of Gly-
Pro containing β-sheets (Gly-cisPro and Gly-transPro). The
Ramachandran map of Gly-Pro in these polymorphs (Figure
S3) showed that, irrespective of the Gly conformation in Gly-
transPro, the conformation of Gly in Gly-cisPro is always βPR,
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Figure 1. (a) Propensities of Gly at pre-cisPro and pre-transPro
positions as a function of secondary structure of Pro. (b) Expected and
observed propensities of Val-Val, Gly-transPro, and Gly-cisPro in β-
sheets. Dihedral angle (φ′ = φ for φ ≥ 0°; φ′ = 360° + φ for φ < 0°)
distributions (bin size 15°) of Gly at (c) pre-transPro and (d) pre-
cisPro positions as a function of Pro secondary structure (total
occurrences in each category are shown within parentheses).
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indicating the robustness of the Gly(βPR)-cisPro structural
motif.
The amide nitrogen of Pro cannot participate in regular β-

sheet hydrogen bonding. One way to cope with this is to form a
bulge around the Pro residue. Bulges are often associated with a
local disruption of the canonical (i, i+2) β-sheet register. We
estimated the local β-strand register around Xaa-Pro motifs in
β-sheets using two parameters  dij (distance between Cβ

atoms of residues i and j), and θij (angle between Cα(i)→Cβ(i)
and Cα(j)→Cβ(j) bond vectors of two residues i and j). Four
such i,j combinations are shown in Figure 2.

In an ideal β-strand (φ = −120° and ψ = +120°), di,i+2 ≈ 6.5
Å and θi,i+2 ≈ 10°. With some leeway for less-than-ideal β-
sheets, we consider residues i and j to face the same side of the
sheet and proximal enough to interact if dij < 10 Å and θij < 60°
(yellow highlighted regions of Figure 2). Figure 2a shows that
residues X and Y in β-(Xi-Gly-cisPro-Yi+3) face the same side of
the β-sheet and are within interacting distance. Thus, a Gly
residue preceding cisPro in β-sheets causes a local shift in the β-

strand register by one residue, from (i, i+2) to (i, i+3). This
brings (Pro − 2) and (Pro + 1) residues on the same side of the
β-sheet. The Gly-cisPro-containing β-sheets are also reasonably
regular, as indicated by the clear clustering of θij/dij
combinations (Figure 2a).
Although dPro−2,Pro+1 in non-Gly-cisPro motifs (Figure 2b)

shows a distribution similar to that in Gly-cisPro motifs (Figure
2a), the corresponding angles are much higher than 60°. This
indicates that (Pro−2) and (Pro+1) face away from each other
when Gly is replaced by non-Gly in Gly-cisPro motifs. Instead,
the distance−angle distribution (Figure 2b) indicates proximity
between the ith and (i+4)th residues (Pro−3 and Pro+1), a
characteristic of bends. Likewise, Gly-transPro-containing β-
sheets are often distorted or irregular, as indicated by the poor
clustering of θij/dij combinations (Figure 2c). For Gly-transPro
units, the only i−j residue combination for which the θij/dij
distribution is restricted to the yellow highlighted region is
when i = Pro and j = Pro+2, a “normal” (i, i+2) interaction
expected in a regular β-sheet.
The local β-sheet register displacement around Gly-cisPro

and the lack (often) of hydrogen bonding by the Gly-cisPro
motif (Figure S4) indicates that these motifs may actually
participate in β-bulges. The β-bulge has been extensively
studied10 and classified. We identified a total of 4201 bulges in
our database using the program PROMOTIF 3.0,11 of which 48
bulges contained cisPro and 600 bulges contained transPro. A
comparative analysis (Figure 3) showed that the majority

(∼79%) of Gly-transPro motifs do not participate in any bulges,
while the majority of Gly-cisPro (∼67%) and non-Gly-cisPro
(∼64%) motifs participate in bulges. However, the types of
bulges in which they participate are very different  Gly-cisPro
motifs mostly participate in wide-type bulges, while most non-
Gly-cisPro motifs participate in special bulges. The wide-type
bulges involving Gly-cisPro do not belong to either of the two
known subtypes,10b αL-β or β-αL. Instead, they comprise a new
subtype of wide bulges, βPR-cisβP (Figure S5a). Similarly, the
wide-type bulges formed by non-Gly-cisPro motifs (Figure S5b)
also belong to a new subtype, βS-cisβP.
Having established β-(Gly-cisPro) to be a sequence and

structural motif, we explored the extent of sequence
conservation of Gly and Pro in homologous proteins. Our
analysis is based on ConSurf-DB,12 a repository for evolu-
tionary conservation analysis of known protein structures based
on phylogenetic relationships between closely related proteins
that ranks individual residues in a 1−9 conservation index
(color index) scale, where 9 corresponds to the highest degree
of conservation. We focus on sequence conservation of Gly and
Pro, both as individual residues and as a pair.

Figure 2. Plots of θij versus dij corresponding to four (i, j)
combinations (red, Pro-3, Pro+1; blue, Pro-2, Pro+1; green, Pro,
Pro+2; black, Pro-2, Pro) in β-sheets containing (a) Gly-cisPro, (b)
non-Gly-cisPro, and (c) Gly-transPro. Each panel is associated with
two representative structures (with PDB codes followed by Pro
residue numbers and chain ID). Pro and the pre-Pro residues are
colored red.

Figure 3. Relative populations of different classes of β-bulges formed
by non-Gly-cisPro, Gly-transPro, and Gly-cisPro motifs in β-sheets
(total occurrences given in parentheses).

Journal of the American Chemical Society Communication

dx.doi.org/10.1021/ja308110t | J. Am. Chem. Soc. 2012, 134, 16536−1653916537



Histograms of summed (Gly + Pro) conservation indices of
Gly-cisPro and Gly-transPro motifs, with Pro present in β-
sheets, bends, and coils, are shown in Figure 4a. Histograms

corresponding to Gly-transPro are very similar, irrespective of
transPro secondary structure. On the other hand, histograms
corresponding to Gly-cisPro show a spike at conservation index
16−18 (most conserved Gly-Pro pair), indicating that the
fraction of the most conserved Gly-cisPro pairs is larger than
the fraction of Gly-cisPro pairs that are less conserved. The
percentage of the most conserved Gly-cisPro pairs is also
dependent on the secondary structure of cisPro  28% when
the secondary structure of Pro is bend/coil and ∼41% when
Pro is present in a β-sheet. The percentage of the most
conserved Gly-transPro motifs, on the other hand, is much less
(∼18%) and independent of the secondary structure of
transPro. The results indicate that the Gly-cisPro motif, when
present in β-sheets, exhibits the highest degree of evolutionary
conservation, significantly higher than that of Gly-cisPro present
in other secondary structures.
To genuinely qualify as a sequence motif, the presence of Gly

and Pro in evolutionarily related proteins must also be
correlated. Pearson’s correlation coefficient r between con-
servation indices of Gly and Pro in Gly-Pro motifs, computed
as a function of the cis−trans conformation and the secondary
structure of Pro, is highest (r = 0.67) for Gly-cisPro and lowest
(r = 0.4) for Gly-transPro when Pro is present in β-sheets. In
comparison, Gly-cisPro and Gly-transPro are characterized by
intermediate r-values (Figure 4b) that are not significantly
different from each other when the Pro assumes the bend or
the coil secondary structure. This clearly indicates that the Gly-
cisPro pair acts as a united residue in β-sheets.
In proteins for which the β-(Gly-cisPro) summed con-

servation index is not in the highest range (for example, PDB
IDs 1mya and 2jlq), the Gly-cisPro motif was often found to be
conserved in a clade-specific manner in the phylogenetic tree,
emphasizing structural and/or functional importance of the
motif (Figures S6 and S7). The ease of cis−trans isomerization
of Pro in β-(Gly-Pro) motifs (Figure S3a), without any major
changes in global structure, suggests that the motif might play
an important role in local rearrangement of binding interfaces
such that a single protein can bind multiple partners in a
context-dependent manner. For example, the Gly-Pro motif on
the surface of ribosomal S10 protein assumes a Gly-transPro
conformation (PDB ID 2avy)13a when bound to ribosomal
RNA and a Gly-cisPro conformation (PDB ID 3d3b)13b when
bound to NusB, with an overlapping binding site that includes
the Gly-Pro motif. Interestingly, the Gly backbone dihedral

angles are similar in the two structures, while backbone dihedral
angles of three residues preceding the Gly-Pro motif are
markedly different in 3d3b (compared to 2avy; Figure S3b). A
non-isomerizing Gly-cisPro motif may also play important roles.
For example, a Gly-cisPro motif, completely conserved and
present at the dimer interface in D-Tyr-tRNATyr deacylase, not
only is important in inter-monomer interactions:14a the Pro
residue also has been implicated to play an important role in
tRNA interaction14b and as a chaperone14c for a conserved Met
residue with invariant conformation that probably plays a role
in substrate chiral selectivity. Another example is the flavivirus
NS3 protein (PDB ID 2jlq),15 in which the cisPro residue of the
Gly-cisPro motif has been implicated in stacking interactions
with RNA bases, responsible for RNA unwinding. Interestingly,
the Gly-cisPro motif in the viral protein is conserved in a clade-
specific manner (Figure S7), implying further subtleties in
structure−function relationship.
Although Pro and Gly are the least preferred residues in β-

sheets, this study shows that together, as a united residue, the β-
sheet propensity of Gly-cisPro is increased 10-fold over the
value expected on the basis of individual propensities of Gly
and cisPro. A Gly residue, preceding cisPro in a β-sheet, rescues
an otherwise regular β-sheet from cisPro-induced distortions by
assuming the βPR conformation and shifts the local β-sheet
register by one residue. The “rescue” is reminiscent of aromatic
rescue of glycine in β-sheets.16 The β-(Gly-cisPro) motif, the
first example of a united residue in proteins, is highly conserved,
functionally important, and dynamic in nature.
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